Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An integrated recurrent neural network and regression model with spatial and climatic couplings for vector-borne disease dynamics (2201.09394v1)

Published 23 Jan 2022 in cs.LG, cs.NA, math.NA, q-bio.PE, and q-bio.QM

Abstract: We developed an integrated recurrent neural network and nonlinear regression spatio-temporal model for vector-borne disease evolution. We take into account climate data and seasonality as external factors that correlate with disease transmitting insects (e.g. flies), also spill-over infections from neighboring regions surrounding a region of interest. The climate data is encoded to the model through a quadratic embedding scheme motivated by recommendation systems. The neighboring regions' influence is modeled by a long short-term memory neural network. The integrated model is trained by stochastic gradient descent and tested on leish-maniasis data in Sri Lanka from 2013-2018 where infection outbreaks occurred. Our model outperformed ARIMA models across a number of regions with high infections, and an associated ablation study renders support to our modeling hypothesis and ideas.

Summary

We haven't generated a summary for this paper yet.