Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hilbert schemes of points on smooth projective surfaces and generalized Kummer varieties with finite group actions (2201.09215v1)

Published 23 Jan 2022 in math.AG and math.NT

Abstract: G\"ottsche and Soergel gave formulas for the Hodge numbers of Hilbert schemes of points on a smooth algebraic surface and the Hodge numbers of generalized Kummer varieties. When a smooth projective surface $S$ admits an action by a finite group $G$, we describe the action of $G$ on the Hodge pieces via point counting. Each element of $G$ gives a trace on $\sum_{n=0}{\infty}\sum_{i=0}{\infty}(-1){i}H{i}(S{[n]},\mathbb{C})q{n}$. In the case that $S$ is a K3 surface or an abelian surface, the resulting generating functions give some interesting modular forms when $G$ acts faithfully and symplectically on $S$.

Summary

We haven't generated a summary for this paper yet.