Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Virtual Classes of Character Stacks (2201.08699v4)

Published 21 Jan 2022 in math.AG and math.RT

Abstract: In this paper, we extend the Topological Quantum Field Theory developed by Gonz\'alez-Prieto, Logares, and Mu~noz for computing virtual classes of $G$-representation varieties of closed orientable surfaces in the Grothendieck ring of varieties to the setting of the character stacks. To this aim, we define a suitable Grothendieck ring of representable stacks, over which this Topological Quantum Field Theory is defined. In this way, we compute the virtual class of the character stack over $BG$, that is, a motivic decomposition of the representation variety with respect to the natural adjoint action. We apply this framework in two cases providing explicit expressions for the virtual classes of the character stacks of closed orientable surfaces of arbitrary genus. First, in the case of the affine linear group of rank $1$, the virtual class of the character stack fully remembers the natural adjoint action, in particular, the virtual class of the character variety can be straightforwardly derived. Second, we consider the non-connected group $\mathbb{G}_m \rtimes \mathbb{Z}/2\mathbb{Z}$, and we show how our theory allows us to compute motivic information of the character stacks where the classical na\"ive point-counting method fails.

Summary

We haven't generated a summary for this paper yet.