Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ordinal Maximin Share Approximation for Chores (2201.07424v1)

Published 19 Jan 2022 in cs.GT and cs.DS

Abstract: We study the problem of fairly allocating a set of m indivisible chores (items with non-positive value) to n agents. We consider the desirable fairness notion of 1-out-of-d maximin share (MMS) -- the minimum value that an agent can guarantee by partitioning items into d bundles and receiving the least valued bundle -- and focus on ordinal approximation of MMS that aims at finding the largest d <= n for which 1-out-of-d MMS allocation exists. Our main contribution is a polynomial-time algorithm for 1-out-of-floor(2n/3) MMS allocation, and a proof of existence of 1-out-of-floor(3n/4) MMS allocation of chores. Furthermore, we show how to use recently-developed algorithms for bin-packing to approximate the latter bound up to a logarithmic factor in polynomial time.

Citations (13)

Summary

We haven't generated a summary for this paper yet.