Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Short Tutorial on The Weisfeiler-Lehman Test And Its Variants (2201.07083v2)

Published 18 Jan 2022 in stat.ML and cs.LG

Abstract: Graph neural networks are designed to learn functions on graphs. Typically, the relevant target functions are invariant with respect to actions by permutations. Therefore the design of some graph neural network architectures has been inspired by graph-isomorphism algorithms. The classical Weisfeiler-Lehman algorithm (WL) -- a graph-isomorphism test based on color refinement -- became relevant to the study of graph neural networks. The WL test can be generalized to a hierarchy of higher-order tests, known as $k$-WL. This hierarchy has been used to characterize the expressive power of graph neural networks, and to inspire the design of graph neural network architectures. A few variants of the WL hierarchy appear in the literature. The goal of this short note is pedagogical and practical: We explain the differences between the WL and folklore-WL formulations, with pointers to existing discussions in the literature. We illuminate the differences between the formulations by visualizing an example.

Citations (52)

Summary

We haven't generated a summary for this paper yet.