Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

AESPA: Accuracy Preserving Low-degree Polynomial Activation for Fast Private Inference (2201.06699v2)

Published 18 Jan 2022 in cs.CR and cs.LG

Abstract: Hybrid private inference (PI) protocol, which synergistically utilizes both multi-party computation (MPC) and homomorphic encryption, is one of the most prominent techniques for PI. However, even the state-of-the-art PI protocols are bottlenecked by the non-linear layers, especially the activation functions. Although a standard non-linear activation function can generate higher model accuracy, it must be processed via a costly garbled-circuit MPC primitive. A polynomial activation can be processed via Beaver's multiplication triples MPC primitive but has been incurring severe accuracy drops so far. In this paper, we propose an accuracy preserving low-degree polynomial activation function (AESPA) that exploits the Hermite expansion of the ReLU and basis-wise normalization. We apply AESPA to popular ML models, such as VGGNet, ResNet, and pre-activation ResNet, to show an inference accuracy comparable to those of the standard models with ReLU activation, achieving superior accuracy over prior low-degree polynomial studies. When applied to the all-RELU baseline on the state-of-the-art Delphi PI protocol, AESPA shows up to 42.1x and 28.3x lower online latency and communication cost.

Citations (23)

Summary

We haven't generated a summary for this paper yet.