Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian Calibration of Imperfect Computer Models using Physics-Informed Priors (2201.06463v4)

Published 17 Jan 2022 in stat.ML, cs.LG, and stat.ME

Abstract: We introduce a computational efficient data-driven framework suitable for quantifying the uncertainty in physical parameters and model formulation of computer models, represented by differential equations. We construct physics-informed priors, which are multi-output GP priors that encode the model's structure in the covariance function. This is extended into a fully Bayesian framework that quantifies the uncertainty of physical parameters and model predictions. Since physical models often are imperfect descriptions of the real process, we allow the model to deviate from the observed data by considering a discrepancy function. For inference, Hamiltonian Monte Carlo is used. Further, approximations for big data are developed that reduce the computational complexity from $\mathcal{O}(N3)$ to $\mathcal{O}(N\cdot m2),$ where $m \ll N.$ Our approach is demonstrated in simulation and real data case studies where the physics are described by time-dependent ODEs describe (cardiovascular models) and space-time dependent PDEs (heat equation). In the studies, it is shown that our modelling framework can recover the true parameters of the physical models in cases where 1) the reality is more complex than our modelling choice and 2) the data acquisition process is biased while also producing accurate predictions. Furthermore, it is demonstrated that our approach is computationally faster than traditional Bayesian calibration methods.

Citations (6)

Summary

We haven't generated a summary for this paper yet.