Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalization of the Extended Minimal Excludant of Andrews and Newman (2201.05997v2)

Published 16 Jan 2022 in math.NT and math.CO

Abstract: In a recent pioneering work, Andrews and Newman defined an extended function $p_{A,a}(n)$ of their minimal excludant or "mex" of a partition function. By considering the special cases $p_{k,k}(n)$ and $p_{2k,k}(n)$, they unearthed connections to the rank and crank of partitions and some restricted partitions. In this paper, we build on their work and obtain more general results associating the extended mex function with the number of partitions of an integer with arbitrary bound on the rank and crank. We also derive a new result expressing the smallest parts function of Andrews as a finite sum of the extended mex function in consideration with a curious coefficient. We also obtain a few restricted partition identities with some reminiscent of shifted partition identities. Finally, we define and explore a new minimal excludant for overpartitions.

Summary

We haven't generated a summary for this paper yet.