Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cut query algorithms with star contraction (2201.05674v1)

Published 14 Jan 2022 in cs.DS, cs.CC, and quant-ph

Abstract: We study the complexity of determining the edge connectivity of a simple graph with cut queries. We show that (i) there is a bounded-error randomized algorithm that computes edge connectivity with $O(n)$ cut queries, and (ii) there is a bounded-error quantum algorithm that computes edge connectivity with $~O(\sqrt{n})$ cut queries. We prove these results using a new technique called "star contraction" to randomly contract edges of a graph while preserving non-trivial minimum cuts. In star contraction vertices randomly contract an edge incident on a small set of randomly chosen vertices. In contrast to the related 2-out contraction technique of Ghaffari, Nowicki, and Thorup [SODA'20], star contraction only contracts vertex-disjoint star subgraphs, which allows it to be efficiently implemented via cut queries. The $O(n)$ bound from item (i) was not known even for the simpler problem of connectivity, and improves the $O(n\log3 n)$ bound by Rubinstein, Schramm, and Weinberg [ITCS'18]. The bound is tight under the reasonable conjecture that the randomized communication complexity of connectivity is $\Omega(n\log n)$, an open question since the seminal work of Babai, Frankl, and Simon [FOCS'86]. The bound also excludes using edge connectivity on simple graphs to prove a superlinear randomized query lower bound for minimizing a symmetric submodular function. Item (ii) gives a nearly-quadratic separation with the randomized complexity and addresses an open question of Lee, Santha, and Zhang [SODA'21]. The algorithm can also be viewed as making $~O(\sqrt{n})$ matrix-vector multiplication queries to the adjacency matrix. Finally, we demonstrate the use of star contraction outside of the cut query setting by designing a one-pass semi-streaming algorithm for computing edge connectivity in the vertex arrival setting. This contrasts with the edge arrival setting where two passes are required.

Citations (10)

Summary

We haven't generated a summary for this paper yet.