Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Chiral phase transition of a dense, magnetized and rotating quark matter (2201.05398v2)

Published 14 Jan 2022 in hep-ph, hep-th, and nucl-th

Abstract: We investigate the chiral symmetry restoration/breaking of a dense, magnetized and rotating quark matter within the Nambu Jona-Lasinio model including $N_f=2$ and $N_c=3$ numbers of flavors and colors, respectively. Imposing the spectral boundary conditions, as well as the positiveness of energy levels, lead to a correlation between the magnetic and rotation fields such that strongly magnetized plasma can not rotate anymore. We solve the gap equation at zero and finite temperature. At finite temperature and baryon chemical potential $\mu_B$, we sketch the phase diagrams $T_c(\mu_B)$ and $T_c(R\Omega)$ in different cases. As a result, we always observe inverse-rotational catalysis mean to decrease $T_c$ by increasing $R\Omega$. But the magnetic field has a more complex structure in the phase diagram. For slowly rotating plasma, we find that $T_c$ decreases by increasing $eB$, while in the fast rotating plasma we see that $T_c$ increases by increasing $eB$. Also, we locate exactly the position of Critical End Point by solving the equations of first and second derivatives of effective action with respect to the order parameters, simultaneously.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (40)
  1. E. V. Shuryak, “What RHIC experiments and theory tell us about properties of quark-gluon plasma?,” Nucl. Phys. A 750 (2005) 64–83, hep-ph/0405066.
  2. M. G. Alford, K. Rajagopal, and F. Wilczek, “QCD at finite baryon density: Nucleon droplets and color superconductivity,” Phys. Lett. B 422 (1998) 247–256, hep-ph/9711395.
  3. K. Fukushima and T. Hatsuda, “The phase diagram of dense QCD,” Rept. Prog. Phys. 74 (2011) 014001, 1005.4814.
  4. V. Skokov, A. Y. Illarionov, and V. Toneev, “Estimate of the magnetic field strength in heavy-ion collisions,” Int. J. Mod. Phys. A 24 (2009) 5925–5932, 0907.1396.
  5. V. A. Miransky and I. A. Shovkovy, “Quantum field theory in a magnetic field: From quantum chromodynamics to graphene and Dirac semimetals,” Phys. Rept. 576 (2015) 1–209, 1503.00732.
  6. A. J. Mizher, M. N. Chernodub, and E. S. Fraga, “Phase diagram of hot QCD in an external magnetic field: possible splitting of deconfinement and chiral transitions,” Phys. Rev. D 82 (2010) 105016, 1004.2712.
  7. K. Fukushima and J. M. Pawlowski, “Magnetic catalysis in hot and dense quark matter and quantum fluctuations,” Phys. Rev. D 86 (2012) 076013, 1203.4330.
  8. C. V. Johnson and A. Kundu, “External Fields and Chiral Symmetry Breaking in the Sakai-Sugimoto Model,” JHEP 12 (2008) 053, 0803.0038.
  9. N. Evans, T. Kalaydzhyan, K.-y. Kim, and I. Kirsch, “Non-equilibrium physics at a holographic chiral phase transition,” JHEP 01 (2011) 050, 1011.2519.
  10. E. S. Fraga and A. J. Mizher, “Can a strong magnetic background modify the nature of the chiral transition in QCD?,” Nucl. Phys. A 820 (2009) 103C–106C, 0810.3693.
  11. G. S. Bali, F. Bruckmann, G. Endrodi, Z. Fodor, S. D. Katz, S. Krieg, A. Schafer, and K. K. Szabo, “The QCD phase diagram for external magnetic fields,” JHEP 02 (2012) 044, 1111.4956.
  12. G. Endrodi, “Critical point in the QCD phase diagram for extremely strong background magnetic fields,” JHEP 07 (2015) 173, 1504.08280.
  13. F. Bruckmann, G. Endrodi, and T. G. Kovacs, “Inverse magnetic catalysis and the Polyakov loop,” JHEP 04 (2013) 112, 1303.3972.
  14. F. Preis, A. Rebhan, and A. Schmitt, “Inverse magnetic catalysis in dense holographic matter,” JHEP 03 (2011) 033, 1012.4785.
  15. N. O. Agasian and S. M. Fedorov, “Quark-hadron phase transition in a magnetic field,” Phys. Lett. B 663 (2008) 445–449, 0803.3156.
  16. K. Fukushima, D. E. Kharzeev, and H. J. Warringa, “The Chiral Magnetic Effect,” Phys. Rev. D 78 (2008) 074033, 0808.3382.
  17. D. E. Kharzeev, L. D. McLerran, and H. J. Warringa, “The Effects of topological charge change in heavy ion collisions: ’Event by event P and CP violation’,” Nucl. Phys. A 803 (2008) 227–253, 0711.0950.
  18. M. N. Chernodub and S. Gongyo, “Interacting fermions in rotation: chiral symmetry restoration, moment of inertia and thermodynamics,” JHEP 01 (2017) 136, 1611.02598.
  19. M. N. Chernodub and S. Gongyo, “Effects of rotation and boundaries on chiral symmetry breaking of relativistic fermions,” Phys. Rev. D 95 (2017), no. 9, 096006, 1702.08266.
  20. X. Wang, M. Wei, Z. Li, and M. Huang, “Quark matter under rotation in the NJL model with vector interaction,” Phys. Rev. D 99 (2019), no. 1, 016018, 1808.01931.
  21. Z. Zhang, C. Shi, X. Luo, and H.-S. Zong, “Chiral phase transition in a rotating sphere,” Phys. Rev. D 101 (2020), no. 7, 074036, 2003.03765.
  22. V. V. Braguta, A. Y. Kotov, D. D. Kuznedelev, and A. A. Roenko, “Influence of relativistic rotation on the confinement-deconfinement transition in gluodynamics,” Phys. Rev. D 103 (2021), no. 9, 094515, 2102.05084.
  23. M. N. Chernodub and V. E. Ambrus, “Phase diagram of helically imbalanced QCD matter,” Phys. Rev. D 103 (2021), no. 9, 094015, 2005.03575.
  24. Y. Liu and I. Zahed, “Pion Condensation by Rotation in a Magnetic field,” Phys. Rev. Lett. 120 (2018), no. 3, 032001, 1711.08354.
  25. Y. Liu and I. Zahed, “Rotating Dirac fermions in a magnetic field in 1+2 and 1+3 dimensions,” Phys. Rev. D 98 (2018), no. 1, 014017, 1710.02895.
  26. H.-L. Chen, X.-G. Huang, and K. Mameda, “Do charged pions condense in a magnetic field with rotation?,” 1910.02700.
  27. H.-L. Chen, X.-G. Huang, and J. Liao, “QCD phase structure under rotation,” Lect. Notes Phys. 987 (2021) 349–379, 2108.00586.
  28. N. Sadooghi, S. M. A. Tabatabaee Mehr, and F. Taghinavaz, “Inverse magnetorotational catalysis and the phase diagram of a rotating hot and magnetized quark matter,” Phys. Rev. D 104 (2021), no. 11, 116022, 2108.12760.
  29. V. I. Ritus, “Radiative corrections in quantum electrodynamics with intense field and their analytical properties,” Annals Phys. 69 (1972) 555–582.
  30. H.-L. Chen, K. Fukushima, X.-G. Huang, and K. Mameda, “Surface Magnetic Catalysis,” Phys. Rev. D 96 (2017), no. 5, 054032, 1707.09130.
  31. H.-L. Chen, K. Fukushima, X.-G. Huang, and K. Mameda, “Analogy between rotation and density for Dirac fermions in a magnetic field,” Phys. Rev. D 93 (2016), no. 10, 104052, 1512.08974.
  32. H.-T. Ding, F. Karsch, and S. Mukherjee, “Thermodynamics of strong-interaction matter from Lattice QCD,” Int. J. Mod. Phys. E 24 (2015), no. 10, 1530007, 1504.05274.
  33. S. M. A. Tabatabaee and N. Sadooghi, “Wigner function formalism and the evolution of thermodynamic quantities in an expanding magnetized plasma,” Phys. Rev. D 101 (2020), no. 7, 076022, 2003.01686.
  34. N. Sadooghi and F. Taghinavaz, “Dilepton production rate in a hot and magnetized quark-gluon plasma,” Annals Phys. 376 (2017) 218–253, 1601.04887.
  35. J. I. Kapusta and C. Gale, Finite-temperature field theory: Principles and applications. Cambridge Monographs on Mathematical Physics. Cambridge University Press, 2011.
  36. J. Santiago and M. Visser, “Tolman temperature gradients in a gravitational field,” Eur. J. Phys. 40 (2019), no. 2, 025604, 1803.04106.
  37. R. Tolman and P. Ehrenfest, “Temperature Equilibrium in a Static Gravitational Field,” Phys. Rev. 36 (1930), no. 12, 1791–1798.
  38. L. D. McLerran, “Lecture on Quarkyonic Effective Field Theory,” Acta Phys. Polon. B 52 (2021), no. 3, 229–241.
  39. M. Asakawa and K. Yazaki, “Chiral Restoration at Finite Density and Temperature,” Nucl. Phys. A 504 (1989) 668–684.
  40. J. R. Morones-Ibarra, A. Enriquez-Perez-Gavilan, A. I. H. Rodriguez, F. V. Flores-Baez, N. B. Mata-Carrizalez, and E. V. Ordoñez, “Chiral symmetry restoration and the critical end point in QCD,” Open Phys. 15 (2017), no. 1, 1039–1044.
Citations (7)

Summary

We haven't generated a summary for this paper yet.