Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
96 tokens/sec
Gemini 2.5 Pro Premium
51 tokens/sec
GPT-5 Medium
36 tokens/sec
GPT-5 High Premium
34 tokens/sec
GPT-4o
96 tokens/sec
DeepSeek R1 via Azure Premium
91 tokens/sec
GPT OSS 120B via Groq Premium
466 tokens/sec
Kimi K2 via Groq Premium
148 tokens/sec
2000 character limit reached

The Positive Energy Theorem for Asymptotically Hyperboloidal Initial Data Sets With Toroidal Infinity and Related Rigidity Results (2201.04327v2)

Published 12 Jan 2022 in math.DG, gr-qc, and hep-th

Abstract: We establish the positive energy theorem and a Penrose-type inequality for 3-dimensional asymptotically hyperboloidal initial data sets with toroidal infinity, weakly trapped boundary, and satisfying the dominant energy condition. In the umbilic case, a rigidity statement is proven showing that the total energy vanishes precisely when the initial data manifold is isometric to a portion of the canonical slice of the associated Kottler spacetime. Furthermore, we provide a new proof of the recent rigidity theorems of Eichmair-Galloway-Mendes [10] in dimension 3, with weakened hypotheses in certain cases. These results are obtained through an analysis of the level sets of spacetime harmonic functions.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube