Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Worker Grouping For Communication-Efficient and Straggler-Tolerant Distributed SGD (2201.04301v1)

Published 12 Jan 2022 in cs.IT, cs.LG, and math.IT

Abstract: Wall-clock convergence time and communication load are key performance metrics for the distributed implementation of stochastic gradient descent (SGD) in parameter server settings. Communication-adaptive distributed Adam (CADA) has been recently proposed as a way to reduce communication load via the adaptive selection of workers. CADA is subject to performance degradation in terms of wall-clock convergence time in the presence of stragglers. This paper proposes a novel scheme named grouping-based CADA (G-CADA) that retains the advantages of CADA in reducing the communication load, while increasing the robustness to stragglers at the cost of additional storage at the workers. G-CADA partitions the workers into groups of workers that are assigned the same data shards. Groups are scheduled adaptively at each iteration, and the server only waits for the fastest worker in each selected group. We provide analysis and experimental results to elaborate the significant gains on the wall-clock time, as well as communication load and computation load, of G-CADA over other benchmark schemes.

Summary

We haven't generated a summary for this paper yet.