Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Note on Numerical Fluxes Conserving a Member of Harten's One-Parameter Family of Entropies for the Compressible Euler Equations (2201.03946v2)

Published 11 Jan 2022 in math.NA and cs.NA

Abstract: Entropy-conserving numerical fluxes are a cornerstone of modern high-order entropy-dissipative discretizations of conservation laws. In addition to entropy conservation, other structural properties mimicking the continuous level such as pressure equilibrium and kinetic energy preservation are important. This note proves that there are no numerical fluxes conserving (one of) Harten's entropies for the compressible Euler equations that also preserve pressure equilibria and have a density flux independent of the pressure. This is in contrast to fluxes based on the physical entropy, where even kinetic energy preservation can be achieved in addition.

Summary

We haven't generated a summary for this paper yet.