Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cracking the Quantum Scaling Limit with Machine Learned Electron Densities (2201.03726v2)

Published 11 Jan 2022 in physics.chem-ph, cond-mat.soft, and physics.bio-ph

Abstract: A long-standing goal of science is to accurately solve the Schr\"odinger equation for large molecular systems. The poor scaling of current quantum chemistry algorithms on classical computers imposes an effective limit of about a few dozen atoms for which we can calculate molecular electronic structure. We present a ML method to break through this scaling limit and make quantum chemistry calculations of very large systems possible. We show that Euclidean Neural Networks can be trained to predict the electron density with high fidelity from limited data. Learning the electron density allows us to train a machine learning model on small systems and make accurate predictions on large ones. We show that this ML electron density model can break through the quantum scaling limit and calculate the electron density of systems of thousands of atoms with quantum accuracy.

Summary

We haven't generated a summary for this paper yet.