Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Searching for dark-matter waves with PPTA and QUIJOTE pulsar polarimetry (2201.03422v4)

Published 10 Jan 2022 in astro-ph.CO and hep-ph

Abstract: The polarization of photons emitted by astrophysical sources might be altered as they travel through a dark matter medium composed of ultra light axion-like particles (ALPs). In particular, the coherent oscillations of the ALP background in the galactic halo induce a periodic change on the polarization of the electromagnetic radiation emitted by local sources such as pulsars. Building up on previous works, we develop a new, more robust, analysis based on the generalised Lomb-Scargle periodogram to search for this periodic signal in the emission of the Crab supernova remnant observed by the QUIJOTE MFI instrument and 20 galactic pulsars from the Parkes Pulsar Timing Array (PPTA) project. We also carefully take into account the stochastic nature of the axion field, an effect often overlooked in previous works. This refined analysis leads to the strongest limits on the axion-photon coupling for a wide range of dark matter masses spanning $10{-23}\text{ eV}\lesssim m_a\lesssim10{-19} \text{ eV}$. Finally, we survey possible optimal targets and the potential sensitivity to axionic dark-matter in this mass range that could be achieved using pulsar polarimetry in the future.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (97)
  1. Gianfranco Bertone. Particle Dark Matter: Observations, Models and Searches. Cambridge Univ. Press, Cambridge, 2010.
  2. Cosmology of the invisible axion. Physics Letters B, 120(1):127–132, 1983.
  3. L. F. Abbott and P. Sikivie. A Cosmological Bound on the Invisible Axion. Phys. Lett. B, 120:133–136, 1983.
  4. The Not So Harmless Axion. Phys. Lett. B, 120:137–141, 1983.
  5. David J.E. Marsh. Axion cosmology. Physics Reports, 643:1–79, Jul 2016.
  6. CP Conservation in the Presence of Instantons. Phys. Rev. Lett., 38:1440–1443, 1977.
  7. Frank Wilczek. Problem of Strong P𝑃Pitalic_P and T𝑇Titalic_T Invariance in the Presence of Instantons. Phys. Rev. Lett., 40:279–282, 1978.
  8. Steven Weinberg. A New Light Boson? Phys. Rev. Lett., 40:223–226, 1978.
  9. P. J. E. Peebles. Fluid dark matter. Astrophys. J. Lett., 534:L127, 2000.
  10. Jeremy Goodman. Repulsive dark matter. New Astron., 5:103, 2000.
  11. Cold and fuzzy dark matter. Phys. Rev. Lett., 85:1158–1161, 2000.
  12. Ultralight scalars as cosmological dark matter. Phys. Rev. D, 95(4):043541, 2017.
  13. Jens C. Niemeyer. Small-scale structure of fuzzy and axion-like dark matter. Progress in Particle and Nuclear Physics, 113:103787, July 2020.
  14. Lam Hui. Wave Dark Matter. Annual Review of Astronomy and Astrophysics, 59(1):247–289, 1 2021.
  15. Axions In String Theory. JHEP, 06:051, 2006.
  16. String Axiverse. Phys. Rev. D, 81:123530, 2010.
  17. Cold dark matter: controversies on small scales. Proc. Nat. Acad. Sci., 112:12249–12255, 2015.
  18. Can light dark matter solve the core-cusp problem? Physical Review D, 98(2), Jul 2018.
  19. First constraints on fuzzy dark matter from lyman-α𝛼\alphaitalic_α forest data and hydrodynamical simulations. Phys. Rev. Lett., 119:031302, Jul 2017.
  20. The importance of quantum pressure of fuzzy dark matter on lyα𝛼\alphaitalic_α forest. The Astrophysical Journal, 863(1):73, Aug 2018.
  21. Fundamental physics with the hubble frontier fields: Constraining dark matter models with the abundance of extremely faint and distant galaxies. The Astrophysical Journal, 836(1):61, Feb 2017.
  22. Galactic rotation curves versus ultralight dark matter: Implications of the soliton-host halo relation. Phys. Rev. D, 98(8):083027, 2018.
  23. Galactic rotation curves vs. ultralight dark matter II. 11 2021.
  24. New astrophysical bounds on ultralight axion-like particles. Phys. Rev. D, 95:043542, Feb 2017.
  25. Michael S. Turner. Coherent Scalar Field Oscillations in an Expanding Universe. Phys. Rev. D, 28:1243, 1983.
  26. Cast Collaboration. New cast limit on the axion–photon interaction. Nature Physics, 13(6):584–590, May 2017.
  27. Revisiting the SN1987A gamma-ray limit on ultralight axion-like particles. JCAP, 02:006, 2015.
  28. G. G. Raffelt. Stars as laboratories for fundamental physics: The astrophysics of neutrinos, axions, and other weakly interacting particles. University of Chicago Press, 5 1996.
  29. New experimental approaches in the search for axion-like particles. Prog. Part. Nucl. Phys., 102:89–159, 2018.
  30. P.A. Zyla et al. Review of Particle Physics. PTEP, 2020(8):083C01, 2020.
  31. Limits on a Lorentz and Parity Violating Modification of Electrodynamics. Phys. Rev. D, 41:1231, 1990.
  32. Effects of a Nambu-Goldstone boson on the polarization of radio galaxies and the cosmic microwave background. Phys. Lett. B, 289:67–72, 1992.
  33. Constraints on millicharged dark matter and axionlike particles from timing of radio waves. Phys. Rev. D, 100(6):063515, 2019.
  34. Constraining the photon coupling of ultra-light dark-matter axion-like particles by polarization variations of parsec-scale jets in active galaxies. JCAP, 02:059, 2019.
  35. Hunting axion dark matter with protoplanetary disk polarimetry. Phys. Rev. Lett., 122:191101, May 2019.
  36. Axion Dark Matter Detection with CMB Polarization. Phys. Rev. D, 100(1):015040, 2019.
  37. Axion-like Dark Matter Constraints from CMB Birefringence. 11 2018.
  38. Wenming Yan et al. Rotation measure variations for 20 millisecond pulsars. Astrophys. Space Sci., 335:485–498, 2011.
  39. The QUIJOTE-CMB experiment: studying the polarisation of the galactic and cosmological microwave emissions. In Larry M. Stepp, Roberto Gilmozzi, and Helen J. Hall, editors, Ground-based and Airborne Telescopes IV, volume 8444 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, page 84442Y, September 2012.
  40. R. Génova-Santos et al. QUIJOTE scientific results – I. Measurements of the intensity and polarisation of the anomalous microwave emission in the Perseus molecular complex. Mon. Not. Roy. Astron. Soc., 452(4):4169–4182, 2015.
  41. WISPy Cold Dark Matter. JCAP, 06:013, 2012.
  42. Dark matter targets for axionlike particle searches. Phys. Rev. D, 100(1):015049, 2019.
  43. Cosmological Tension of Ultralight Axion Dark Matter and its Solutions. Phys. Rev. D, 102(11):115030, 2020.
  44. Detecting axionlike dark matter with linearly polarized pulsar light. Phys. Rev. D, 101(6):063012, 2020.
  45. No chiral light bending by clumps of axion-like particles. Phys. Dark Univ., 27:100428, 2020.
  46. Optical properties of dynamical axion backgrounds. Phys. Rev. D, 101(12):123503, 2020.
  47. Revealing the Dark Matter Halo with Axion Direct Detection. Phys. Rev. D, 97(12):123006, 2018.
  48. Dark Matter Interferometry. Phys. Rev. D, 103(7):076018, 2021.
  49. Anne M Green. Astrophysical uncertainties on the local dark matter distribution and direct detection experiments. J. Phys. G, 44(8):084001, 2017.
  50. Gary P. Centers et al. Stochastic fluctuations of bosonic dark matter. 6 2019.
  51. Directional axion detection. JCAP, 11:051, 2018.
  52. John David Jackson. Classical electrodynamics. Wiley, New York, NY, 3rd ed. edition, 1999.
  53. The photo-philic QCD axion. JHEP, 01:095, 2017.
  54. Experimental Targets for Photon Couplings of the QCD Axion. JHEP, 02:006, 2018.
  55. Enhanced axion–photon coupling in GUT with hidden photon. Phys. Lett. B, 780:538–542, 2018.
  56. Yoshiaki Sofue. Rotation Curve of the Milky Way and the Dark Matter Density. Galaxies, 8(2):37, April 2020.
  57. D. J. Reardon et al. The Parkes pulsar timing array second data release: timing analysis. MNRAS, 507(2):2137–2153, October 2021.
  58. Extremely high precision VLBI astrometry of PSR j0437-4715 and implications for theories of gravity. The Astrophysical Journal, 685(1):L67–L70, aug 2008.
  59. The australia telescope national facility pulsar catalogue. The Astronomical Journal, 129(4):1993–2006, apr 2005.
  60. R. Abbott et al. Gravitational-wave Constraints on the Equatorial Ellipticity of Millisecond Pulsars. Astrophys. J. Lett., 902(1):L21, 2020.
  61. A precise proper motion for the crab pulsar, and the difficulty of testing spin-kick alignment for young neutron stars. The Astrophysical Journal, 677(2):1201–1215, apr 2008.
  62. A Universal Density Profile from Hierarchical Clustering. ApJ, 490(2):493–508, December 1997.
  63. The Parkes Pulsar Timing Array Project. LABEL:@jnlPASA, 30:e017, January 2013.
  64. Pulsar rotation measures and the large-scale structure of the galactic magnetic field. The Astrophysical Journal, 642(2):868–881, May 2006.
  65. DRAO’s web page. https://nrc.canada.ca/en/research-development/nrc-facilities/dominion-radio-astrophysical-observatory-research-facility.
  66. Updates and resources for the IRI model. https://iri.gsfc.nasa.gov/ and http://irimodel.org/.
  67. Source for these improvements. https://ngdc.noaa.gov/IAGA/vmod/igrf.html.
  68. The status of the QUIJOTE multi-frequency instrument. In Wayne S. Holland and Jonas Zmuidzinas, editors, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VI, volume 8452 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, page 845233, September 2012.
  69. J. A. Rubiño Martín et al. In preparation.
  70. Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Planets and Celestial Calibration Sources. ApJS, 192(2):19, February 2011.
  71. R. Génova-Santos et al. In preparation.
  72. J. D. Scargle. Studies in astronomical time series analysis. II. Statistical aspects of spectral analysis of unevenly spaced data. ApJ., 263:835–853, December 1982.
  73. N. R. Lomb. Least-Squares Frequency Analysis of Unequally Spaced Data. Ap&SS, 39(2):447–462, February 1976.
  74. Jacob T. VanderPlas. Understanding the Lomb-Scargle Periodogram. The Astrophysical Journal Supplement Series, 236(1):16, May 2018.
  75. R. Vio and P. Andreani. A critical comparison of the Lomb-Scargle and the classical periodograms. arXiv e-prints, page arXiv:1807.01595, July 2018.
  76. M. Zechmeister and M. Kurster. The generalised Lomb-Scargle periodogram. A new formalism for the floating-mean and Keplerian periodograms. Astron. Astrophys., 496:577, 2009.
  77. Periodograms for multiband astronomical time series. The Astrophysical Journal, 812(1):18, Oct 2015.
  78. Construction of a calibrated probabilistic classification catalog: Application to 50k variable sources in the all-sky automated survey. The Astrophysical Journal Supplement Series, 203(2):32, Dec 2012.
  79. The phases differential astrometry data archive. iii. limits to tertiary companions. The Astronomical Journal, 140(6):1631–1645, Oct 2010.
  80. Gonzalo R. Arce. Nonlinear signal processing: a statistical approach. Wiley, 2005.
  81. M. S. Bartlett. Periodogram Analysis and Continuos Spectra. Biometrika, 37(1-2):1–16, 06 1950.
  82. Statistical Distributions. Wiley, 2011.
  83. P. A. R. Ade et al. BICEP / Keck XIV: Improved constraints on axion-like polarization oscillations in the cosmic microwave background. 8 2021.
  84. Keitaro Takahashi et al. SKA-Japan Pulsar Science with the Square Kilometre Array. 3 2016.
  85. Next generation very large array memo no. 5: Science working groups – project overview, 2015.
  86. Do globular clusters possess Dark Matter halos? A case study in NGC 2419. Mon. Not. Roy. Astron. Soc., 428:3648, 2013.
  87. Structure and Dynamics of the Globular Cluster Palomar 13. Astrophys. J., 743:167, 2011. [Erratum: Astrophys.J. 778, 85 (2013)].
  88. Globular clusters with dark matter halos. 1. Initial relaxation. Astrophys. J., 619:243, 2005.
  89. The Subhalo populations of lambda-CDM dark halos. Mon. Not. Roy. Astron. Soc., 355:819, 2004.
  90. Tidal disruption of dark matter halos around proto-globular clusters. Astrophys. J., 640:22–30, 2006.
  91. Capture of Inelastic Dark Matter in White Dwarves. Phys. Rev. D, 81:083520, 2010.
  92. What Could be the Observational Signature of Dark Matter in Globular Clusters? JCAP, 08:010, 2020.
  93. Pulsars in globular clusters. http://naic.edu/~pfreire/GCpsr.html.
  94. Pulsar Polarization Arrays. Phys. Rev. Lett., 130(12):121401, 2023. arXiv e-prints, page arXiv: 2111.10615
  95. CERN Program Library. https://cmd.inp.nsk.su/old/cmd2/manuals/cernlib/shortwrups/crnfinal.html.
  96. Charles R. Harris et al. Array programming with NumPy. Nature, 585(7825):357–362, September 2020.
  97. J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science & Engineering, 9(3):90–95, 2007.
Citations (15)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com