Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A martingale approach to time-dependent and time-periodic linear response in Markov jump processes (2201.02982v4)

Published 9 Jan 2022 in math.PR, cond-mat.stat-mech, math-ph, and math.MP

Abstract: We consider a Markov jump process on a general state space to which we apply a time-dependent weak perturbation over a finite time interval. By martingale-based stochastic calculus, under a suitable exponential moment bound for the perturbation we show that the perturbed process does not explode almost surely and we study the linear response (LR) of observables and additive functionals. When the unperturbed process is stationary, the above LR formulas become computable in terms of the steady state two-time correlation function and of the stationary distribution. Applications are discussed for birth and death processes, random walks in a confining potential, random walks in a random conductance field. We then move to a Markov jump process on a finite state space and investigate the LR of observables and additive functionals in the oscillatory steady state (hence, over an infinite time horizon), when the perturbation is time-periodic. As an application we provide a formula for the complex mobility matrix of a random walk on a discrete $d$-dimensional torus, with possibly heterogeneous jump rates.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com