Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Comprehensive RF Dataset Collection and Release: A Deep Learning-Based Device Fingerprinting Use Case (2201.02213v1)

Published 6 Jan 2022 in eess.SP and cs.LG

Abstract: Deep learning-based RF fingerprinting has recently been recognized as a potential solution for enabling newly emerging wireless network applications, such as spectrum access policy enforcement, automated network device authentication, and unauthorized network access monitoring and control. Real, comprehensive RF datasets are now needed more than ever to enable the study, assessment, and validation of newly developed RF fingerprinting approaches. In this paper, we present and release a large-scale RF fingerprinting dataset, collected from 25 different LoRa-enabled IoT transmitting devices using USRP B210 receivers. Our dataset consists of a large number of SigMF-compliant binary files representing the I/Q time-domain samples and their corresponding FFT-based files of LoRa transmissions. This dataset provides a comprehensive set of essential experimental scenarios, considering both indoor and outdoor environments and various network deployments and configurations, such as the distance between the transmitters and the receiver, the configuration of the considered LoRa modulation, the physical location of the conducted experiment, and the receiver hardware used for training and testing the neural network models.

Citations (15)

Summary

We haven't generated a summary for this paper yet.