Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

No self-concordant barrier interior point method is strongly polynomial (2201.02186v1)

Published 6 Jan 2022 in math.OC, cs.DS, and math.CO

Abstract: It is an open question to determine if the theory of self-concordant barriers can provide an interior point method with strongly polynomial complexity in linear programming. In the special case of the logarithmic barrier, it was shown in [Allamigeon, Benchimol, Gaubert and Joswig, SIAM J. on Applied Algebra and Geometry, 2018] that the answer is negative. In this paper, we show that none of the self-concordant barrier interior point methods is strongly polynomial. This result is obtained by establishing that, on parametric families of convex optimization problems, the log-limit of the central path degenerates to a piecewise linear curve, independently of the choice of the barrier function. We provide an explicit linear program that falls in the same class as the Klee-Minty counterexample, i.e., in dimension $n$ with $2n$ constraints, in which the number of iterations is $\Omega(2n)$.

Citations (7)

Summary

We haven't generated a summary for this paper yet.