Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 35 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 85 tok/s
GPT OSS 120B 468 tok/s Pro
Kimi K2 203 tok/s Pro
2000 character limit reached

A Unified Framework for Attention-Based Few-Shot Object Detection (2201.02052v1)

Published 6 Jan 2022 in cs.CV

Abstract: Few-Shot Object Detection (FSOD) is a rapidly growing field in computer vision. It consists in finding all occurrences of a given set of classes with only a few annotated examples for each class. Numerous methods have been proposed to address this challenge and most of them are based on attention mechanisms. However, the great variety of classic object detection frameworks and training strategies makes performance comparison between methods difficult. In particular, for attention-based FSOD methods, it is laborious to compare the impact of the different attention mechanisms on performance. This paper aims at filling this shortcoming. To do so, a flexible framework is proposed to allow the implementation of most of the attention techniques available in the literature. To properly introduce such a framework, a detailed review of the existing FSOD methods is firstly provided. Some different attention mechanisms are then reimplemented within the framework and compared with all other parameters fixed.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.