Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inverse Extended Kalman Filter -- Part I: Fundamentals (2201.01539v3)

Published 5 Jan 2022 in math.OC, cs.SY, eess.SP, eess.SY, and stat.ML

Abstract: Recent advances in counter-adversarial systems have garnered significant research attention to inverse filtering from a Bayesian perspective. For example, interest in estimating the adversary's Kalman filter tracked estimate with the purpose of predicting the adversary's future steps has led to recent formulations of inverse Kalman filter (I-KF). In this context of inverse filtering, we address the key challenges of non-linear process dynamics and unknown input to the forward filter by proposing an inverse extended Kalman filter (I-EKF). The purpose of this paper and the companion paper (Part II) is to develop the theory of I-EKF in detail. In this paper, we assume perfect system model information and derive I-EKF with and without an unknown input when both forward and inverse state-space models are non-linear. In the process, I-KF-with-unknown-input is also obtained. We then provide theoretical stability guarantees using both bounded non-linearity and unknown matrix approaches and prove the I-EKF's consistency. Numerical experiments validate our methods for various proposed inverse filters using the recursive Cram\'{e}r-Rao lower bound as a benchmark. In the companion paper (Part II), we further generalize these formulations to highly non-linear models and propose reproducing kernel Hilbert space-based EKF to handle incomplete system model information.

Citations (11)

Summary

We haven't generated a summary for this paper yet.