Papers
Topics
Authors
Recent
2000 character limit reached

Critical behaviors of lattice U(1) gauge models and three-dimensional Abelian-Higgs gauge field theory

Published 4 Jan 2022 in cond-mat.stat-mech and hep-lat | (2201.01082v1)

Abstract: We investigate under which conditions the three-dimensional (3D) multicomponent Abelian-Higgs (AH) field theory (scalar electrodynamics) is the continuum limit of statistical lattice gauge models, i.e., when it characterizes the universal behavior at critical transitions occurring in these models. We perform Monte Carlo simulations of the lattice AH model with compact gauge fields and $N$-component scalar fields with charge $q\ge 2$ for $N=15$ and 25. Finite-size scaling analyses of the Monte Carlo data show that the transitions along the line separating the confined and deconfined phases are continuous and that they belong to the same universality class for any $q\ge 2$. Moreover, they are in the same universality class as the transitions in the lattice AH model with noncompact gauge fields along the Coulomb-to-Higgs transition line. We finally argue that these critical behaviors are described by the stable charged fixed point of the renormalization-group flow of the 3D AH field theory.

Citations (15)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.