Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Differential Privacy Made Easy (2201.00099v1)

Published 1 Jan 2022 in cs.CR

Abstract: Data privacy is a major issue for many decades, several techniques have been developed to make sure individuals' privacy but still world has seen privacy failures. In 2006, Cynthia Dwork gave the idea of Differential Privacy which gave strong theoretical guarantees for data privacy. Many companies and research institutes developed differential privacy libraries, but in order to get the differentially private results, users have to tune the privacy parameters. In this paper, we minimized these tune-able parameters. The DP-framework is developed which compares the differentially private results of three Python based DP libraries. We also introduced a new very simple DP library (GRAM-DP), so the people with no background of differential privacy can still secure the privacy of the individuals in the dataset while releasing statistical results in public.

Citations (7)

Summary

We haven't generated a summary for this paper yet.