Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
36 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
37 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
4 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Modelling matrix time series via a tensor CP-decomposition (2112.15423v2)

Published 31 Dec 2021 in stat.ME and stat.ML

Abstract: We consider to model matrix time series based on a tensor CP-decomposition. Instead of using an iterative algorithm which is the standard practice for estimating CP-decompositions, we propose a new and one-pass estimation procedure based on a generalized eigenanalysis constructed from the serial dependence structure of the underlying process. To overcome the intricacy of solving a rank-reduced generalized eigenequation, we propose a further refined approach which projects it into a lower-dimensional full-ranked eigenequation. This refined method improves significantly the finite-sample performance of the estimation. The asymptotic theory has been established under a general setting without the stationarity. It shows, for example, that all the component coefficient vectors in the CP-decomposition are estimated consistently with certain convergence rates. The proposed model and the estimation method are also illustrated with both simulated and real data; showing effective dimension-reduction in modelling and forecasting matrix time series.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.