Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sufficient-Statistic Memory AMP (2112.15327v4)

Published 31 Dec 2021 in cs.IT, cs.LG, eess.SP, math.IT, math.ST, stat.ML, and stat.TH

Abstract: Approximate message passing (AMP) type algorithms have been widely used in the signal reconstruction of certain large random linear systems. A key feature of the AMP-type algorithms is that their dynamics can be correctly described by state evolution. While state evolution is a useful analytic tool, its convergence is not guaranteed. To solve the convergence problem of the state evolution of AMP-type algorithms in principle, this paper proposes a sufficient-statistic memory AMP (SS-MAMP) algorithm framework under the conditions of right-unitarily invariant sensing matrices, Lipschitz-continuous local processors and the sufficient-statistic constraint (i.e., the current message of each local processor is a sufficient statistic of the signal vector given the current and all preceding messages). We show that the covariance matrices of SS-MAMP are L-banded and convergent, which is an optimal framework (from the local MMSE/LMMSE perspective) for AMP-type algorithms given the Lipschitz-continuous local processors. Given an arbitrary MAMP, we can construct an SS-MAMP by damping, which not only ensures the convergence of the state evolution, but also preserves the orthogonality, i.e., its dynamics can be correctly described by state evolution. As a byproduct, we prove that the Bayes-optimal orthogonal/vector AMP (BO-OAMP/VAMP) is an SS-MAMP. As an example, we construct a sufficient-statistic Bayes-optimal MAMP (SS-BO-MAMP) whose state evolution converges to the minimum (i.e., Bayes-optimal) mean square error (MSE) predicted by replica methods when it has a unique fixed point. In addition, the MSE of SS-BO-MAMP is not worse than the original BO-MAMP. Finally, simulations are provided to support the theoretical results.

Citations (7)

Summary

We haven't generated a summary for this paper yet.