Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Speed of extinction for continuous state branching processes in subcritical Lévy environments: the strongly and intermediate regimes (2112.13674v2)

Published 27 Dec 2021 in math.PR

Abstract: In this paper, we study the speed of extinction of continuous state branching processes in subcritical L\'evy environments. More precisely, when the associated L\'evy process to the environment drifts to $-\infty$ and, under a suitable exponential martingale change of measure (Esscher transform), the environment either drifts to $-\infty$ or oscillates. We extend recent results of Palau et al. (2016) and Li and Xu (2018), where the branching term is associated to a spectrally positive stable L\'evy process and complement the recent article of Bansaye et al. (2021) where the critical case was studied. Our methodology combines a path analysis of the branching process together with its L\'evy environment, fluctuation theory for L\'evy processes and the asymptotic behaviour of exponential functionals of L\'evy processes. As an application of the aforementioned results, we characterise the process conditioned to survival also known as the $Q$-process.

Summary

We haven't generated a summary for this paper yet.