Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stance Quantification: Definition of the Problem (2112.13288v1)

Published 25 Dec 2021 in cs.CL

Abstract: Stance detection is commonly defined as the automatic process of determining the positions of text producers, towards a target. In this paper, we define a research problem closely related to stance detection, namely, stance quantification, for the first time. We define stance quantification on a pair including (1) a set of natural language text items and (2) a target. At the end of the stance quantification process, a triple is obtained which consists of the percentages of the number of text items classified as Favor, Against, Neither, respectively, towards the target in the input pair. Also defined in the current paper is a significant subproblem of the stance quantification problem, namely, multi-target stance quantification. We believe that stance quantification at the aggregate level can lead to fruitful results in many application settings, and furthermore, stance quantification might be the sole stance related analysis alternative in settings where privacy concerns prevent researchers from applying generic stance detection.

Summary

We haven't generated a summary for this paper yet.