Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CatchBackdoor: Backdoor Detection via Critical Trojan Neural Path Fuzzing (2112.13064v3)

Published 24 Dec 2021 in cs.CR, cs.AI, and cs.CV

Abstract: The success of deep neural networks (DNNs) in real-world applications has benefited from abundant pre-trained models. However, the backdoored pre-trained models can pose a significant trojan threat to the deployment of downstream DNNs. Numerous backdoor detection methods have been proposed but are limited to two aspects: (1) high sensitivity on trigger size, especially on stealthy attacks (i.e., blending attacks and defense adaptive attacks); (2) rely heavily on benign examples for reverse engineering. To address these challenges, we empirically observed that trojaned behaviors triggered by various trojan attacks can be attributed to the trojan path, composed of top-$k$ critical neurons with more significant contributions to model prediction changes. Motivated by it, we propose CatchBackdoor, a detection method against trojan attacks. Based on the close connection between trojaned behaviors and trojan path to trigger errors, CatchBackdoor starts from the benign path and gradually approximates the trojan path through differential fuzzing. We then reverse triggers from the trojan path, to trigger errors caused by diverse trojaned attacks. Extensive experiments on MINST, CIFAR-10, and a-ImageNet datasets and 7 models (LeNet, ResNet, and VGG) demonstrate the superiority of CatchBackdoor over the state-of-the-art methods, in terms of (1) \emph{effective} - it shows better detection performance, especially on stealthy attacks ($\sim$ $\times$ 2 on average); (2) \emph{extensible} - it is robust to trigger size and can conduct detection without benign examples.

Summary

We haven't generated a summary for this paper yet.