Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spoiler in a Textstack: How Much Can Transformers Help? (2112.12913v1)

Published 24 Dec 2021 in cs.CL and cs.LG

Abstract: This paper presents our research regarding spoiler detection in reviews. In this use case, we describe the method of fine-tuning and organizing the available text-based model tasks with the latest deep learning achievements and techniques to interpret the models' results. Until now, spoiler research has been rarely described in the literature. We tested the transfer learning approach and different latest transformer architectures on two open datasets with annotated spoilers (ROC AUC above 81\% on TV Tropes Movies dataset, and Goodreads dataset above 88\%). We also collected data and assembled a new dataset with fine-grained annotations. To that end, we employed interpretability techniques and measures to assess the models' reliability and explain their results.

Citations (1)

Summary

We haven't generated a summary for this paper yet.