Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Well-posedness of weak solution for a nonlinear poroelasticity model (2112.12425v1)

Published 23 Dec 2021 in math.AP, cs.NA, and math.NA

Abstract: In this paper, we study the existence and uniqueness of weak solution of a nonlinear poroelasticity model. To better describe the proccess of deformation and diffusion underlying in the original model, we firstly reformulate the nonlinear poroelasticity by a multiphysics approach. Then, we adopt the similar technique of proving the well-posedness of nonlinear Stokes equations to prove the existence and uniqueness of weak solution of a nonlinear poroelasticity model. And we strictly prove the growth, coercivity and monotonicity of the nonlinear stress-strain relation, give the energy estimates and use Schauder's fixed point theorem to show the existence and uniqueness of weak solution of the nonlinear poroelasticity model.

Citations (1)

Summary

We haven't generated a summary for this paper yet.