Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Barely-Supervised Learning: Semi-Supervised Learning with very few labeled images (2112.12004v1)

Published 22 Dec 2021 in cs.CV

Abstract: This paper tackles the problem of semi-supervised learning when the set of labeled samples is limited to a small number of images per class, typically less than 10, problem that we refer to as barely-supervised learning. We analyze in depth the behavior of a state-of-the-art semi-supervised method, FixMatch, which relies on a weakly-augmented version of an image to obtain supervision signal for a more strongly-augmented version. We show that it frequently fails in barely-supervised scenarios, due to a lack of training signal when no pseudo-label can be predicted with high confidence. We propose a method to leverage self-supervised methods that provides training signal in the absence of confident pseudo-labels. We then propose two methods to refine the pseudo-label selection process which lead to further improvements. The first one relies on a per-sample history of the model predictions, akin to a voting scheme. The second iteratively updates class-dependent confidence thresholds to better explore classes that are under-represented in the pseudo-labels. Our experiments show that our approach performs significantly better on STL-10 in the barely-supervised regime, e.g. with 4 or 8 labeled images per class.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Thomas Lucas (17 papers)
  2. Philippe Weinzaepfel (38 papers)
  3. Gregory Rogez (36 papers)
Citations (27)

Summary

We haven't generated a summary for this paper yet.