Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Parametric Church's Thesis: Synthetic Computability without Choice (2112.11781v1)

Published 22 Dec 2021 in cs.LO and math.LO

Abstract: In synthetic computability, pioneered by Richman, Bridges, and Bauer, one develops computability theory without an explicit model of computation. This is enabled by assuming an axiom equivalent to postulating a function $\phi$ to be universal for the space $\mathbb{N}\to\mathbb{N}$ ($\mathsf{CT}\phi$, a consequence of the constructivist axiom $\mathsf{CT}$), Markov's principle, and at least the axiom of countable choice. Assuming $\mathsf{CT}$ and countable choice invalidates the law of excluded middle, thereby also invalidating classical intuitions prevalent in textbooks on computability. On the other hand, results like Rice's theorem are not provable without a form of choice. In contrast to existing work, we base our investigations in constructive type theory with a separate, impredicative universe of propositions where countable choice does not hold and thus a priori $\mathsf{CT}{\phi}$ and the law of excluded middle seem to be consistent. We introduce various parametric strengthenings of $\mathsf{CT}{\phi}$, which are equivalent to assuming $\mathsf{CT}\phi$ and an $Sm_n$ operator for $\phi$ like in the $Sm_n$ theorem. The strengthened axioms allow developing synthetic computability theory without choice, as demonstrated by elegant synthetic proofs of Rice's theorem. Moreover, they seem to be not in conflict with classical intuitions since they are consequences of the traditional analytic form of $\mathsf{CT}$. Besides explaining the novel axioms and proofs of Rice's theorem we contribute machine-checked proofs of all results in the Coq proof assistant.

Citations (14)

Summary

We haven't generated a summary for this paper yet.