Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Projected Sliced Wasserstein Autoencoder-based Hyperspectral Images Anomaly Detection (2112.11243v3)

Published 20 Dec 2021 in cs.CV

Abstract: Anomaly detection (AD) has been an active research area in various domains. Yet, the increasing data scale, complexity, and dimension turn the traditional methods into challenging. Recently, the deep generative model, such as the variational autoencoder (VAE), has sparked a renewed interest in the AD problem. However, the probability distribution divergence used as the regularization is too strong, which causes the model cannot capture the manifold of the true data. In this paper, we propose the Projected Sliced Wasserstein (PSW) autoencoder-based anomaly detection method. Rooted in the optimal transportation, the PSW distance is a weaker distribution measure compared with $f$-divergence. In particular, the computation-friendly eigen-decomposition method is leveraged to find the principal component for slicing the high-dimensional data. In this case, the Wasserstein distance can be calculated with the closed-form, even the prior distribution is not Gaussian. Comprehensive experiments conducted on various real-world hyperspectral anomaly detection benchmarks demonstrate the superior performance of the proposed method.

Summary

We haven't generated a summary for this paper yet.