Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Developing and Validating Semi-Markov Occupancy Generative Models: A Technical Report (2112.11111v1)

Published 21 Dec 2021 in cs.LG, cs.SY, and eess.SY

Abstract: This report documents recent technical work on developing and validating stochastic occupancy models in commercial buildings, performed by the Pacific Northwest National Laboratory (PNNL) as part of the Sensor Impact Evaluation and Verification project under the U.S. Department of Energy (DOE) Building Technologies Office (BTO). In this report, we present our work on developing and validating inhomogeneous semi-Markov chain models for generating sequences of zone-level occupancy presence and occupancy counts in a commercial building. Real datasets are used to learn and validate the generative occupancy models. Relevant metrics such as normalized Jensen-Shannon distance (NJSD) are used to demonstrate the ability of the models to express realistic occupancy behavioral patterns.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.