Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SelFSR: Self-Conditioned Face Super-Resolution in the Wild via Flow Field Degradation Network (2112.10683v1)

Published 20 Dec 2021 in cs.CV and eess.IV

Abstract: In spite of the success on benchmark datasets, most advanced face super-resolution models perform poorly in real scenarios since the remarkable domain gap between the real images and the synthesized training pairs. To tackle this problem, we propose a novel domain-adaptive degradation network for face super-resolution in the wild. This degradation network predicts a flow field along with an intermediate low resolution image. Then, the degraded counterpart is generated by warping the intermediate image. With the preference of capturing motion blur, such a model performs better at preserving identity consistency between the original images and the degraded. We further present the self-conditioned block for super-resolution network. This block takes the input image as a condition term to effectively utilize facial structure information, eliminating the reliance on explicit priors, e.g. facial landmarks or boundary. Our model achieves state-of-the-art performance on both CelebA and real-world face dataset. The former demonstrates the powerful generative ability of our proposed architecture while the latter shows great identity consistency and perceptual quality in real-world images.

Citations (1)

Summary

We haven't generated a summary for this paper yet.