Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
o3 Pro
5 tokens/sec
GPT-4.1 Pro
15 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

Spiral Language Modeling (2112.10543v1)

Published 20 Dec 2021 in cs.CL and cs.AI

Abstract: In almost all text generation applications, word sequences are constructed in a left-to-right (L2R) or right-to-left (R2L) manner, as natural language sentences are written either L2R or R2L. However, we find that the natural language written order is not essential for text generation. In this paper, we propose Spiral LLMing (SLM), a general approach that enables one to construct natural language sentences beyond the L2R and R2L order. SLM allows one to form natural language text by starting from an arbitrary token inside the result text and expanding the rest tokens around the selected ones. It makes the decoding order a new optimization objective besides the LLM perplexity, which further improves the diversity and quality of the generated text. Furthermore, SLM makes it possible to manipulate the text construction process by selecting a proper starting token. SLM also introduces generation orderings as additional regularization to improve model robustness in low-resource scenarios. Experiments on 8 widely studied Neural Machine Translation (NMT) tasks show that SLM is constantly effective with up to 4.7 BLEU increase comparing to the conventional L2R decoding approach.

Summary

We haven't generated a summary for this paper yet.