Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

COX: CUDA on X86 by Exposing Warp-Level Functions to CPUs (2112.10034v1)

Published 19 Dec 2021 in cs.DC and cs.AR

Abstract: As CUDA programs become the de facto program among data parallel applications such as high-performance computing or machine learning applications, running CUDA on other platforms has been a compelling option. Although several efforts have attempted to support CUDA on other than NVIDIA GPU devices, due to extra steps in the translation, the support is always behind a few years from supporting CUDA's latest features. The examples are DPC, Hipfy, where CUDA source code have to be translated to their native supporting language and then they are supported. In particular, the new CUDA programming model exposes the warp concept in the programming language, which greatly changes the way the CUDA code should be mapped to CPU programs. In this paper, hierarchical collapsing that \emph{correctly} supports CUDA warp-level functions on CPUs is proposed. Based on hierarchical collapsing, a framework, COX, is developed that allows CUDA programs with the latest features to be executed efficiently on CPU platforms. COX consists of a compiler IR transformation (new LLVM pass) and a runtime system to execute the transformed programs on CPU devices. COX can support the most recent CUDA features, and the application coverage is much higher (90%) than for previous frameworks (68%) with comparable performance. We also show that the warp-level functions in CUDA can be efficiently executed by utilizing CPU SIMD (AVX) instructions.

Citations (3)

Summary

We haven't generated a summary for this paper yet.