Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural Born Iteration Method For Solving Inverse Scattering Problems: 2D Cases (2112.09831v2)

Published 18 Dec 2021 in physics.comp-ph, cs.AI, and eess.IV

Abstract: In this paper, we propose the neural Born iterative method (NeuralBIM) for solving 2D inverse scattering problems (ISPs) by drawing on the scheme of physics-informed supervised residual learning (PhiSRL) to emulate the computing process of the traditional Born iterative method (TBIM). NeuralBIM employs independent convolutional neural networks (CNNs) to learn the alternate update rules of two different candidate solutions regarding the residuals. Two different schemes are presented in this paper, including the supervised and unsupervised learning schemes. With the data set generated by the method of moments (MoM), supervised NeuralBIM are trained with the knowledge of total fields and contrasts. Unsupervised NeuralBIM is guided by the physics-embedded objective function founding on the governing equations of ISPs, which results in no requirement of total fields and contrasts for training. Numerical and experimental results further validate the efficacy of NeuralBIM.

Citations (17)

Summary

We haven't generated a summary for this paper yet.