Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rank4Class: A Ranking Formulation for Multiclass Classification (2112.09727v2)

Published 17 Dec 2021 in cs.LG, cs.AI, and cs.IR

Abstract: Multiclass classification (MCC) is a fundamental machine learning problem of classifying each instance into one of a predefined set of classes. In the deep learning era, extensive efforts have been spent on developing more powerful neural embedding models to better represent the instance for improving MCC performance. In this paper, we do not aim to propose new neural models for instance representation learning, but to show that it is promising to boost MCC performance with a novel formulation through the lens of ranking. In particular, by viewing MCC as to rank classes for an instance, we first argue that ranking metrics, such as Normalized Discounted Cumulative Gain, can be more informative than the commonly used Top-$K$ metrics. We further demonstrate that the dominant neural MCC recipe can be transformed to a neural ranking framework. Based on such generalization, we show that it is intuitive to leverage advanced techniques from the learning to rank literature to improve the MCC performance out of the box. Extensive empirical results on both text and image classification tasks with diverse datasets and backbone neural models show the value of our proposed framework.

Citations (2)

Summary

We haven't generated a summary for this paper yet.