Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
104 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
40 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Low Resource Species Agnostic Bird Activity Detection (2112.09042v1)

Published 16 Dec 2021 in eess.AS

Abstract: This paper explores low resource classifiers and features for the detection of bird activity, suitable for embedded Automatic Recording Units which are typically deployed for long term remote monitoring of bird populations. Features include low-level spectral parameters, statistical moments on pitch samples, and features derived from amplitude modulation. Performance is evaluated on several lightweight classifiers using the NIPS4Bplus dataset. Our experiments show that random forest classifiers perform best on this task, achieving an accuracy of 0.721 and an F1-Score of 0.604. We compare the results of our system against both a Convolutional Neural Network based detector, and standard MFCC features. Our experiments show that we can achieve equal or better performance in most metrics using features and models with a smaller computational cost and which are suitable for edge deployment.

Citations (4)

Summary

We haven't generated a summary for this paper yet.