Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Provenance-aware Discovery of Functional Dependencies on Integrated Views (2112.09011v1)

Published 16 Dec 2021 in cs.DB

Abstract: The automatic discovery of functional dependencies(FDs) has been widely studied as one of the hardest problems in data profiling. Existing approaches have focused on making the FD computation efficient while inspecting single relations at a time. In this paper, for the first time we address the problem of inferring FDs for multiple relations as they occur in integrated views by solely using the functional dependencies of the base relations of the view itself. To this purpose, we leverage logical inference and selective mining and show that we can discover most of the exact FDs from the base relations and avoid the full computation of the FDs for the integrated view itself, while at the same time preserving the lineage of FDs of base relations. We propose algorithms to speedup the inferred FD discovery process and mine FDs on-the-fly only from necessary data partitions. We present InFine(INferred FunctIoNal dEpendency), an end-to-end solution to discover inferred FDs on integrated views by leveraging provenance information of base relations. Our experiments on a range of real-world and synthetic datasets demonstrate the benefits of our method over existing FD discovery methods that need to rerun the discovery process on the view from scratch and cannot exploit lineage information on the FDs. We show that InFine outperforms traditional methods necessitating the full integrated view computation by one to two order of magnitude in terms of runtime. It is also the most memory efficient method while preserving FD provenance information using mainly inference from base table with negligible execution time.

Summary

We haven't generated a summary for this paper yet.