Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bridging between Cognitive Processing Signals and Linguistic Features via a Unified Attentional Network (2112.08831v2)

Published 16 Dec 2021 in cs.CL and cs.AI

Abstract: Cognitive processing signals can be used to improve NLP tasks. However, it is not clear how these signals correlate with linguistic information. Bridging between human language processing and linguistic features has been widely studied in neurolinguistics, usually via single-variable controlled experiments with highly-controlled stimuli. Such methods not only compromises the authenticity of natural reading, but also are time-consuming and expensive. In this paper, we propose a data-driven method to investigate the relationship between cognitive processing signals and linguistic features. Specifically, we present a unified attentional framework that is composed of embedding, attention, encoding and predicting layers to selectively map cognitive processing signals to linguistic features. We define the mapping procedure as a bridging task and develop 12 bridging tasks for lexical, syntactic and semantic features. The proposed framework only requires cognitive processing signals recorded under natural reading as inputs, and can be used to detect a wide range of linguistic features with a single cognitive dataset. Observations from experiment results resonate with previous neuroscience findings. In addition to this, our experiments also reveal a number of interesting findings, such as the correlation between contextual eye-tracking features and tense of sentence.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Yuqi Ren (6 papers)
  2. Deyi Xiong (103 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.