Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exposure Inequality in People Recommender Systems: The Long-Term Effects (2112.08237v1)

Published 15 Dec 2021 in cs.SI

Abstract: People recommender systems may affect the exposure that users receive in social networking platforms, influencing attention dynamics and potentially strengthening pre-existing inequalities that disproportionately affect certain groups. In this paper we introduce a model to simulate the feedback loop created by multiple rounds of interactions between users and a link recommender in a social network. This allows us to study the long-term consequences of those particular recommendation algorithms. Our model is equipped with several parameters to control (i) the level of homophily in the network, (ii) the relative size of the groups, (iii) the choice among several state-of-the-art link recommenders, and (iv) the choice among three different user behavior models, that decide which recommendations are accepted or rejected. Our extensive experimentation with the proposed model shows that a minority group, if homophilic enough, can get a disproportionate advantage in exposure from all link recommenders. Instead, when it is heterophilic, it gets under-exposed. Moreover, while the homophily level of the minority affects the speed of the growth of the disparate exposure, the relative size of the minority affects the magnitude of the effect. Finally, link recommenders strengthen exposure inequalities at the individual level, exacerbating the "rich-get-richer" effect: this happens for both the minority and the majority class and independently of their level of homophily.

Citations (21)

Summary

We haven't generated a summary for this paper yet.