Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exponential Convergence of Deep Operator Networks for Elliptic Partial Differential Equations (2112.08125v2)

Published 15 Dec 2021 in math.NA, cs.LG, cs.NA, and cs.NE

Abstract: We construct and analyze approximation rates of deep operator networks (ONets) between infinite-dimensional spaces that emulate with an exponential rate of convergence the coefficient-to-solution map of elliptic second-order partial differential equations. In particular, we consider problems set in $d$-dimensional periodic domains, $d=1, 2, \dots$, and with analytic right-hand sides and coefficients. Our analysis covers linear, elliptic second order divergence-form PDEs as, e.g., diffusion-reaction problems, parametric diffusion equations, and elliptic systems such as linear isotropic elastostatics in heterogeneous materials. We leverage the exponential convergence of spectral collocation methods for boundary value problems whose solutions are analytic. In the present periodic and analytic setting, this follows from classical elliptic regularity. Within the ONet branch and trunk construction of [Chen and Chen, 1993] and of [Lu et al., 2021], we show the existence of deep ONets which emulate the coefficient-to-solution map to a desired accuracy in the $H1$ norm, uniformly over the coefficient set. We prove that the neural networks in the ONet have size $\mathcal{O}(\left|\log(\varepsilon)\right|\kappa)$, where $\varepsilon>0$ is the approximation accuracy, for some $\kappa>0$ depending on the physical space dimension.

Citations (35)

Summary

We haven't generated a summary for this paper yet.