Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Predicting Media Memorability: Comparing Visual, Textual and Auditory Features (2112.07969v1)

Published 15 Dec 2021 in cs.CV and cs.AI

Abstract: This paper describes our approach to the Predicting Media Memorability task in MediaEval 2021, which aims to address the question of media memorability by setting the task of automatically predicting video memorability. This year we tackle the task from a comparative standpoint, looking to gain deeper insights into each of three explored modalities, and using our results from last year's submission (2020) as a point of reference. Our best performing short-term memorability model (0.132) tested on the TRECVid2019 dataset -- just like last year -- was a frame based CNN that was not trained on any TRECVid data, and our best short-term memorability model (0.524) tested on the Memento10k dataset, was a Bayesian Ride Regressor fit with DenseNet121 visual features.

Citations (4)

Summary

We haven't generated a summary for this paper yet.