Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Operator-Splitting Finite Element Method for the Numerical Solution of Radiative Transfer Equation (2112.07949v2)

Published 15 Dec 2021 in math.NA and cs.NA

Abstract: An operator-splitting finite element scheme for the time-dependent, high-dimensional radiative transfer equation is presented in this paper. The streamline upwind Petrov-Galerkin finite element method and discontinuous Galerkin finite element method are used for the spatial-angular discretization of the radiative transfer equation, whereas the implicit backward Euler scheme is used for temporal discretization. Error analysis of the proposed numerical scheme for the fully discrete radiative transfer equation is presented. The stability and convergence estimates for the fully discrete problem are derived. Moreover, an operator-splitting algorithm for numerical simulation of high-dimensional equations is also presented. The validation of the derived estimates and implementation is demonstrated with appropriate numerical experiments.

Citations (2)

Summary

We haven't generated a summary for this paper yet.