Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
138 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
4 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Seeking the Building Blocks of Visual Imagery and Creativity in a Cognitively Inspired Neural Network (2112.06832v1)

Published 13 Dec 2021 in q-bio.NC

Abstract: How do we imagine visual objects and combine them to create new forms? To answer this question, we need to explore the cognitive, computational and neural mechanisms underlying imagery and creativity. The body of research on deep learning models with creative behaviors is growing. However, in this paper we suggest that the complexity of such models and their training sets is an impediment to using them as tools to understand human aspects of creativity. We propose using simpler models, inspired by neural and cognitive mechanisms, that are trained with smaller data sets. We show that a standard deep learning architecture can demonstrate imagery by generating shape/color combinations using only symbolic codes as input. However, generating a new combination that was not experienced by the model was not possible. We discuss the limitations of such models, and explain how creativity could be embedded by incorporating memory mechanisms to combine the output of the network into new combinations and use that as new training data.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.