Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GM Score: Incorporating inter-class and intra-class generator diversity, discriminability of disentangled representation, and sample fidelity for evaluating GANs (2112.06431v2)

Published 13 Dec 2021 in cs.LG, cs.AI, and stat.ML

Abstract: While generative adversarial networks (GAN) are popular for their higher sample quality as opposed to other generative models like the variational autoencoders (VAE) and Boltzmann machines, they suffer from the same difficulty of the evaluation of generated samples. Various aspects must be kept in mind, such as the quality of generated samples, the diversity of classes (within a class and among classes), the use of disentangled latent spaces, agreement of said evaluation metric with human perception, etc. In this paper, we propose a new score, namely, GM Score, which takes into various factors such as sample quality, disentangled representation, intra-class and inter-class diversity, and other metrics such as precision, recall, and F1 score are employed for discriminability of latent space of deep belief network (DBN) and restricted Boltzmann machine (RBM). The evaluation is done for different GANs (GAN, DCGAN, BiGAN, CGAN, CoupledGAN, LSGAN, SGAN, WGAN, and WGAN Improved) trained on the benchmark MNIST dataset.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Harshvardhan GM (1 paper)
  2. Aanchal Sahu (1 paper)
  3. Mahendra Kumar Gourisaria (2 papers)