Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sage: Leveraging ML to Diagnose Unpredictable Performance in Cloud Microservices (2112.06263v1)

Published 12 Dec 2021 in cs.DC

Abstract: Cloud applications are increasingly shifting from large monolithic services, to complex graphs of loosely-coupled microservices. Despite their advantages, microservices also introduce cascading QoS violations in cloud applications, which are difficult to diagnose and correct. We present Sage, a ML-driven root cause analysis system for interactive cloud microservices. Sage leverages unsupervised learning models to circumvent the overhead of trace labeling, determines the root cause of unpredictable performance online, and applies corrective actions to restore performance. On experiments on both dedicated local clusters and large GCE clusters we show that Sage achieves high root cause detection accuracy and predictable performance.

Citations (15)

Summary

We haven't generated a summary for this paper yet.