Emergent Mind

Abstract

Embedding-based methods are popular for Knowledge Base Question Answering (KBQA), but few current models have numerical reasoning skills and thus struggle to answer ordinal constrained questions. This paper proposes a new embedding-based KBQA framework which particularly takes numerical reasoning into account. We present NumericalTransformer on top of NSM, a state-of-the-art embedding-based KBQA model, to create NT-NSM. To enable better training, we propose two pre-training tasks with explicit numerical-oriented loss functions on two generated training datasets and a template-based data augmentation method for enriching ordinal constrained QA dataset. Extensive experiments on KBQA benchmarks demonstrate that with the help of our training algorithm, NT-NSM is empowered with numerical reasoning skills and substantially outperforms the baselines in answering ordinal constrained questions.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a detailed summary of this paper with a premium account.

We ran into a problem analyzing this paper.

Please try again later (sorry!).

Get summaries of trending AI papers delivered straight to your inbox

Unsubscribe anytime.