Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
92 tokens/sec
Gemini 2.5 Pro Premium
50 tokens/sec
GPT-5 Medium
15 tokens/sec
GPT-5 High Premium
23 tokens/sec
GPT-4o
97 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
466 tokens/sec
Kimi K2 via Groq Premium
201 tokens/sec
2000 character limit reached

The XYZ$^2$ hexagonal stabilizer code (2112.06036v2)

Published 11 Dec 2021 in quant-ph

Abstract: We consider a topological stabilizer code on a honeycomb grid, the "XYZ$2$" code. The code is inspired by the Kitaev honeycomb model and is a simple realization of a "matching code" discussed by Wootton [J. Phys. A: Math. Theor. 48, 215302 (2015)], with a specific implementation of the boundary. It utilizes weight-six ($XYZXYZ$) plaquette stabilizers and weight-two ($XX$) link stabilizers on a planar hexagonal grid composed of $2d2$ qubits for code distance $d$, with weight-three stabilizers at the boundary, stabilizing one logical qubit. We study the properties of the code using maximum-likelihood decoding, assuming perfect stabilizer measurements. For pure $X$, $Y$, or $Z$ noise, we can solve for the logical failure rate analytically, giving a threshold of 50%. In contrast to the rotated surface code and the XZZX code, which have code distance $d2$ only for pure $Y$ noise, here the code distance is $2d2$ for both pure $Z$ and pure $Y$ noise. Thresholds for noise with finite $Z$ bias are similar to the XZZX code, but with markedly lower sub-threshold logical failure rates. The code possesses distinctive syndrome properties with unidirectional pairs of plaquette defects along the three directions of the triangular lattice for isolated errors, which may be useful for efficient matching-based or other approximate decoding.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.